Коэффициенты интенсивности напряжений для криволинейных трещин
Автор: Денис Дмитриевич Новов
Организация: Механико-математический факультет МГУ имени М.В. Ломоносова, Москва

Задачи, связанные с трещинами, представляют особый интерес и находят практическое применение при строительстве зданий и сооружений, в геомеханике горных пластов, при поиске и разработке месторождений полезных ископаемых, оценке последствий горных ударов и землетрясений. В плоских задачах трещина в общем случае моделируется отрезком кривой, на которой вектор перемещения имеет разные значения при подходе к ней по нормали с разных сторон (два берега трещины). Задачам с трещинами присуща чрезвычайная нерегулярность границ областей, отвечающих изучаемым объектам, так что при их количественном исследовании трудно рассчитывать на получение аналитических результатов и решения чаще всего приходится так или иначе искать численно.
В работе представлен численный метод, позволяющий решать статические задачи линейной механики разрушения для упругой среды с криволинейными трещинами [1]. Он дает возможность определить поля перемещений и напряжений, а также коэффициенты интенсивности напряжений для плоских задач механики разрушения с учетом кривизны трещин, благодаря чему удается получить более гладкую аппроксимацию границы. Вычисление коэффициентов интенсивности напряжений является основной задачей линейной механики трещин. Их значение позволяет определить, будет ли расти трещина при заданной нагрузке.
Верификация с аналитическими и численными результатами других авторов показала хорошее качественное и количественное совпадение расчётов. В работе исследованы взаимное влияние двух трещин, расположенных вдоль дуг одной окружности, а также влияние искривления края прямолинейной трещины на значения коэффициентов интенсивности напряжений.
1. Звягин А.В., Новов Д.Д. Метод разрывных смещений, учитывающий наличие кривизны трещины // Вестн. Моск. Ун-та. Сер. 1, Математика. Механика. 2023. № 3. С. 67–71.